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Large numbers of MS/MS peptide spectra generated in proteomics experiments require efficient,
sensitive and specific algorithms for peptide identification. In the Open Mass Spectrometry Search
Algorithm (OMSSA), specificity is calculated by a classic probability score using an explicit model for
matching experimental spectra to sequences. At default thresholds, OMSSA matches more spectra
from a standard protein cocktail than a comparable algorithm. OMSSA is designed to be faster than
published algorithms in searching large MS/MS datasets.
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Introduction

High throughput proteomics1,2 involves the analysis of
thousands of peptide spectra derived from biological samples.
These spectra can be identified by four general types of
algorithms: de novo calling of the sequence directly from the
spectrum,3-5 the use of unambiguous “peptide sequence tags”
derived from spectra that are used to search known sequences,6-8

cross-correlation methods that correlate experimental spectra
with theoretical spectra,9,10 and probability-based matching that
calculates a score based on the statistical significance of a
match between an observed peptide fragment and those
calculated from a sequence search library.11-15 The Open Mass
Spectrometry Search Algorithm (OMSSA) is an algorithm of the
last type and is unique in its use of classical hypothesis testing
based on an explicit model of matching statistics, the type of
statistical model used in BLAST.16 Due to the large numbers of
spectra generated in high throughput proteomics, manual
interpretation is impractical, so it is essential that the matches
from these algorithms are scored with a threshold or thresholds
that allow few false positives. Probability-based matching allows
such thresholds to be set in terms of the number of false
positives allowed, leading to the development of several
statistical scoring algorithms17-24 in addition to existing prob-
ability based search algorithms. OMSSA is an attempt to create
a fast search algorithm whose results are scored using a classical
statistical model using assumptions taken directly from the
experimental setup and allowing for experimental noise.

OMSSA takes experimental ms/ms spectra, filters noise
peaks, extracts m/z values, and then compares these m/z values
to calculated m/z values derived from peptides produced by
an in silico digestion of a protein sequence library. The

theoretical peptides must have a mass within a user specified
tolerance of the precursor mass. The resulting search hits are
then statistically scored.

To validate OMSSA, a standard protein cocktail at several
concentrations was analyzed by an automated ion-trap 2D LC-
MS/MS system and the resulting spectra evaluated by OMSSA
and Mascot,11 a commonly used probability-based search
algorithm. The search results from both algorithms were then
compared.

Experimental Section

The protein standards used in this paper were obtained from
Sigma-Aldrich Corp. St. Louis, MO. A standard cocktail was
prepared and composed of horse myoglobin (Accession P02188),
bovine serum albumin (Accession P02769), chicken lysozyme
(Accession P00698), and bovine carbonic anhydrase II (Acces-
sion AAO85140) using 10 fmol and 100 fmol aliquots. The yeast
lysate used in this study consists of S. cerevisiae proteins
sequentially extracted from the original 5 g pellet using a
modified MudPIT procedure.25 The cocktail was denatured,
reduced, alkylated, and digested with endoproteinase Lys-C
followed by trypsin. The digest (20 ug) was analyzed by an
automated 2D LC-MS/MS system.26 This system is composed
of Shimadzu LC-VP series components directly coupled to a
ThermoFinnigan LCQ Classic ion trap mass spectrometer.
Peptide samples were injected via an auto sampler and loaded
onto a strong cation exchange column. Peptides were then
eluted in 6 steps of increasing ionic strength and captured onto
6 individual peptide cap traps. The contents of the cap traps
were sequentially eluted onto a reversed-phase column, and
the peptides were subsequently separated and eluted directly
into the ESI ion trap mass spectrometer. The 100 fmol protein
standard dataset contained 486 spectra and the 10 fmol protein
standard dataset contained 134 spectra, all of which were
encoded into dta file format using the LCQ_DTA.exe utility. MS/
MS spectra were acquired using a “big five” scan function, i.e.,
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iterative acquisition of a full scan mass spectrum from 400 to
1800 m/z followed by sequential CID tandem mass spectra of
the five most abundant precursor ions from the previous full
scan mass spectrum. No attempt was made to determine the
charge state of the precursor ions. Without knowledge of
precursor charge state, the LCQ-DTA.exe utility assigns the
charge state as 1+ if no product ions are observed above the
m/z value of the precursor ion. Otherwise, the LCQ_DTA.exe
utility calculates relative molecular weight (Mr) for both the
2+ and 3+ charge states.

The OMSSA algorithm is written in C++ using the standard
NCBI C and C++ toolkits. The use of the NCBI toolkits
allows the compilation and use of OMSSA on most major
operating systems, such as Linux, Windows, MacOS, and
Solaris. The source code for OMSSA is in the public domain
and is part of the NCBI C++ toolkit, available at ftp://
ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/. By using
the C toolkit, OMSSA is able to use sequence libraries created
for BLAST,16 simplifying the creation or acquisition of sequence
search libraries. Executables for OMSSA may be found at ftp://
ftp.ncbi.nlm.nih.gov/pub/lewisg/omssa.

OMSSA takes as input two file formats: dta file format and
a generic file format. The generic file format is described in
the OMSSA source code. We intend to add additional file input
formats to support additional instruments.

The version of Mascot used for this paper was 1.8. Mascot
was run on a cluster of four two-CPU machines running Red
Hat Linux 7, where three of the machines were computational
nodes. The CPUs in this cluster were 1.4 GHz AMD MP/
Athlon’s with 1 Gb main memory shared on each machine.
OMSSA was run on one CPU of a two-CPU Linux 2.4 machine
using 1.26 GHz Pentium III processors with 2 Gb of main
memory.

Searches in both OMSSA and Mascot were done with the
following settings: tryptic cleavage, precursor mass tolerance
of (2 Da, product mass tolerance of (0.8 Da, carbamidomethyl
cysteine as a fixed modification, methionine oxide as a variable
modification, and 1 missed cleavage allowed.

Results and Discussion

The general flow of the algorithm is shown in Figure 1. The
individual steps are detailed below.

Charge Determination. MS/MS spectra often do not include
experimentally measured precursor charges for reasons of
sensitivity. However, determining the possible precursor charge
states of spectrum is necessary in OMSSA because it selects
theoretical peptides from the sequence search library by
comparison to the neutral mass of the precursor. To do this,
OMSSA determines whether the precursor is charge 1+ or not
by counting the number of peaks above the precursor m/z. If

more than 95% of the peaks are below the precursor m/z value,
then the spectrum is determined to be 1+, otherwise the
spectrum is determined to be charge g 2+, and is searched
twice, assuming that the precursor ion is 2+ or 3+.

Noise Filter. Experimental spectra can contain a significant
amount of noise that can result in random matches, requiring
the algorithm to eliminate some noise peaks without deleting
signal peaks. Fortunately, it is not necessary to delete all noise
peaks as the search statistics take noise into account. The
OMSSA noise filter has several steps. The first step is to delete
background peaks whose intensity is below a percentage of the
maximum intensity peak. By default, OMSSA cuts peaks below
2.5% of the maximum intensity, although this value is user
adjustable and is modified dynamically in the last part of the
algorithm, as detailed in a later section. The second step is to
delete any remaining precursor ion peaks. The addition of this
step does not affect the results from our test data, but was
added to ensure deletion of the precursor ions. The third step
is to eliminate peaks that are obviously not mono-isotopic. This
is accomplished by examining peaks in order of intensity and
deleting peaks that are within 0 to 2 Da of the m/z value of the
peak being examined. In our test data, this step increases the
number of true positive hits in the 100 fmol dataset by 69%.

The last step in the noise filter is to filter out peaks that are
too close together. In this step, precursor charge 1+ and 2+
spectra are treated differently from charge 3+ spectra. It is
assumed that 1+ and 2+ spectra contain mainly 1+ product
ions. For these spectra, the filter examines each peak in order
of intensity. In a region (27 Da of the peak being examined,
all except the most intense peak is deleted under the assump-
tion that in a region of this size, no other peak from the same
ion series will exist and only one ion from the complementary
ion series can exist. 27 Da is used as it is less than the residue
mass of the smallest amino acid. This value is user adjustable.

For precursor charge 3+, the spectra are assumed to contain
charge 1+ product ions in the range above m/2 and 1+ and
2+ product ions in the region below m/2, where m is the
neutral mass of the precursor. The 1+ product region is treated
using the same filter as the 1+ and 2+ precursor ions. In the
2+ product region, a slightly different filter is applied. Peaks
are examined in order of intensity and only the two most
intense peaks within (14 Da of the peak being examined are
kept. 14 Da is used as it is less than the residue mass of the
smallest amino acid doubly charged. Two peaks are allowed
to account for two types of ions: a doubly charged ion of the
complementary series or a singly charge ion of either series.

Ions corresponding to water and ammonia loss from b and/
or y ions are excluded in the last step by ignoring peaks that
are 17 or 18 Da lower in mass than the peak being examined.
Additionally, to avoid deleting monoisotopic peaks, peaks 1 Da
less than the peak being examined are not considered.

In our 100 fmol test data, this fourth step increased the
number of true positives hits by 16%.

Calculation and Comparison of Precursor Mass. The first
comparison done between the experimental spectrum and the
sequence search library is to compare the measured precursor
mass and those calculated by digesting in silico the search
library with the enzyme of interest. If the masses match within
a tolerance given by the user, then the algorithm proceeds to
the next step; otherwise, it selects the next peptide from the
sequence search library for precursor mass comparison. The
computation of the theoretical peptide mass allows for missed
cleavage, fixed modifications to the mass of an amino acid, and

Figure 1. Algorithm flow diagram.
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variable modifications to the mass of an amino acid, where
“variable” means that masses are calculated with and without
the modification.

This step is the most computationally intensive step in
OMSSA. To speed the algorithm, several strategies are used.
First, computation is done using integerssall masses are scaled
by a factor of 100 to deal with noninteger masses. This scaling
value may be adjusted by the user in the source code. Second,
the sequence library is memory mapped for quickly loading
the sequences into the CPU. Memory mapping is a technique
where a file is accessed as though it were main memory. Third,
the spectra being searched are sorted and indexed by precursor
mass, avoiding unnecessary comparisons.

Calculation of the Mass Ladder. If the precursor mass
matches a calculated mass, then the theoretical m/z values of
the product ions are calculated from the search library peptide
for comparison to the m/z values derived from the experimen-
tal spectrum. b1+ and y1+ ion series are calculated for charge
1+ and 2+ precursor ions and, additionally, b2+ and y2+ product
ions are calculated for charge 3+ precursor ions. Restricting
2+ precursor ions to only producing 1+ product ions increases
the number of true positive hits in the 100 fmol test set by 79%.

If variable modifications are selected by the user, then
multiple ladders are calculated for each theoretical peptide. The
ladders calculated in OMSSA are monoisotopic. In the mass
range normally used in high throughput proteomics, this
should not cause a significant loss in sensitivity, although in
future versions of the algorithm we will address the issue.

Comparison of Mass Ladders. To find hits, OMSSA com-
pares the calculated mass ladders with the mass ladders derived
from the experimental spectra using a mass tolerance given
by the user. Both mass ladders are sorted by m/z value for fast
matching.

If an experimental m/z value is used for a match between a
given experimental mass ladder and a calculated mass ladder,
then it is no longer considered for matching ions in other ion
series, e.g., if an experimental m/z value matches a particular
b ion, it is not allowed to match a y ion. The reason for this
restriction is that if it is not possible to tell within an
instrument’s resolution if particular m/z value matches more
than one ion species, then a conservative approach is to assume
that it matches only one. If one assumes otherwise, then the
false positive rate increases due to peptides in the sequence
library that have a large number of matching ion species, for
example, palindromic peptides.

The number of matched ions is inserted into a list ranked
by the number of matches. There is a separate list for each
charge state the precursor may be in. To conserve memory,
the length of this ranked list is limited to a user adjustable
value, 100 by default.

Scoring. To determine a scoring function, it is useful to
understand the characteristics of random matches to m/z
values derived from spectra. Calculating a distribution of
random matches allows the significance of a hit to be expressed
as the probability of the hit being random, where a low
probability implies a significant hit. To study the distribution,
a randomly selected set of ion trap spectra from an LC-MS/
MS study of tryptically digested yeast whole cell lysate was
searched against the NCBI nonredundant protein sequence
library (nr). Figure 2 shows a histogram for one of these spectra
that counts the number of product m/z values in each
theoretical peptide that match the product m/z values of the
experimental spectrum when the precursor mass of the ex-

perimental spectrum matches the calculated precursor mass.
Fitted to the histogram is a Poisson distribution, which is a
distribution found in random processes where the average
number of successes is much less than the possible number
of successes. This relationship to the Poisson distribution has
been described in earlier studies.23,27 The good fit to the Poisson
distribution motivated us to devise a model of the random hit
distribution that does not rely on peak fitting or iterating
through a sequence library for its calculation.

To create the model, we first consider spectra that contain
only charge 1+ product ions. Let o be the lower bound of
measured product ions m/z values and r be the upper bound.
If the product ion measurement tolerance is t, then a measure
of the number of possible matches is (r - o)/2t. If m is the
neutral mass of the precursor, then we are trying to match
h‚(r - o)/m calculated m/z values to v experimental product
ions, where h is the total number of calculated m/z values for
product ions. Assuming a Poisson process, this would give us
a mean

for the Poisson distribution

where x is the number of matches measured.
Next, we consider spectra that contain 1+ and 2+ product

ions. The probability distribution is also a Poisson distribution
whose mean is given by

The details of this derivation are given the Appendix. Note that
in the model, the effect of random noise is taken into account

Figure 2. Histogram of the number of product ion matches for
a yeast lysate spectrum against all peptides in the NCBI nr
sequence library whose precursor mass matches the lysate
spectrum precursor mass. Error bars are the square root of the
counts. The fit curve is a Poisson distribution.
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by including the number of noise peaks in v, allowing OMSSA
to use a noise filter that does not filter all noise peaks.

To help validate the model, nine spectra from the yeast lysate
set were selected with charge states of 1+, 2+, and 3+ and
neutral masses ranging from 1090 to 3570 Da. Each spectrum
was compared to all theoretical peptides calculated from the
nr search library with matching precursor ion masses and
charge, and the number of product ion matches recorded. The
mean value of the number of matches was measured from this
set. The model mean was calculated using the average value
of the model for the top 100 hits and plotted against the
measured mean in Figure 3. Note that the correspondence is
approximately one-to-one, indicating that the calculated Pois-
son distribution outlined above may be a sufficient measure
of the random distribution of hits to the m/z values of a spectra.
To further explore the relationship of the model and measured
mean with respect to the product mass tolerance t, the
tolerance was doubled from 0.8 to 1.6 Da. As shown in Figure
3, the linear relationship still holds.

Selection of m/z Values Matching the Most Intense Peaks.
To make the algorithm more efficient and increase sensitivity,
the following selection on the theoretical spectra is made: At
least one of the m/z values of the theoretical spectra must
match the m/z values of the top n peaks in the spectrum (n )
3 by default). This selection changes the probability distribu-
tion. If the probability q that a matched m/z value matches a
calculated m/z value is n/v, then the probability distribution
is

where the normalization factor Q is

over all x, and can be computed numerically.
E-Value Calculation. OMSSA reports hits ranked by E-value.

An E-value for a hit is a score that is the expected number of
random hits from a search library to a given spectrum such
that the random hits have an equal or better score than the

hit. For example, a hit with an E-value of 1.0 implies that one
hit with a score equal to or better than the hit being scored
would be expected at random from a sequence library search.
If the probability that a single comparison of one spectrum to
one calculated ms/ms spectrum is not random is

where y is the number of successful product ion matches and
z is 1 or 2 depending on the ion series searched, then the
probability that a search of one spectrum against N theoretical
spectra is random is

The E-value is then

This E-value remains valid for searches that include variable
post-translational modifications. In general, variable post-
translational modifications increase the value of N since
modified peptides can generate two or more theoretical spectra,
depending on the number of modified sites. The multiple
theoretical spectra generated from a single peptide sequence
can be considered nonredundant, as they do not have the same
precursor m/z and only share a subset of the product ions,
making it unnecessary to explore the effect of redundancy on
the E-value.

Rescoring to Improve Sensitivity. The sensitivity of OMSSA
can by improved by varying the threshold used in the initial
step of the noise filter to cut off background noise. This is
accomplished by varying the background noise threshold from
0 to 20% of the maximum intensity peak and examining the
E-value of the best hit. The final threshold chosen is the one
the results in the lowest E-value for the best hit. It is possible
that this rescoring could affect the statistics adversely by
resampling the sequence library, however, in practice this does
not significantly change the list of best hits.

OMSSA Validation and Comparison to Mascot. Matrix
Science’s Mascot includes a MS/MS search algorithm with
probability-based scoring, so it is useful to validate OMSSA by
comparison to Mascot. Both OMSSA and Mascot were used to
analyze 486 spectra from a 100 fmol protein standard and 134
spectra from a 10 fmol protein standard. The two different sets
of spectra were used to ensure a range of spectrum quality.

For every hit to a spectrum, Mascot reports an ions score
and two score thresholdssthe identity threshold and the
homology threshold. Although the exact details of the Mascot
scoring statistics have not been published, an ions score higher
than the identity threshold is defined to mean that the hit has
a less than 5% probability of being a random event. In this
paper, we report Mascot results ranked by the ions score minus
the identity threshold. We do not use the homology threshold
as this did not appear to improve the overall Mascot results.

Since the nr sequence library included multiple homologous
forms of the proteins found in the standard cocktail, we
performed a two step sequence comparison between the hit
peptides and the true peptides to determine if the hits were
true positives. The first comparison was a residue by residue

Figure 3. Comparison of the mean values of the number of
matches of theoretical m/z values to experimental data and the
mean values calculated using the model. Each point corresponds
to a different MS/MS spectrum searched against the nr sequence
library. The triangles correspond to searches performed with a
product ion tolerance of (0.8 Da and the circles correspond to a
product ion tolerance of (1.6 Da.
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comparison where the residue pairs isoleucine/leucine and
lysine/glutamine were considered the same within the resolu-
tion of the ion-trap mass spectrometer. If this comparison
succeeded, then the hit was labeled a true positive. If the first
comparison did not succeed and the peptide was longer than
5 residues, then pair wise BLAST was performed between the
hit peptide and the true peptides. If a BLAST hit with a BLAST
e-value below 0.02 was found, then the hit was labeled

homologous but not identical and eliminated from the analysis,
i.e., it was considered neither a true nor a false positive. The
reason for this rejection is that OMSSA was designed to be an
identification algorithm and does not explicitly take into
account homology. All remaining hits with e-values above 0.02
were counted as false positives.

Table 1 lists significant top hits to spectra as identified by
OMSSA and Mascot. The hits are categorized into true and false
positives. A significant hit in OMSSA has an E-value < 0.1 and
a significant hit in Mascot has an ions score that exceeds the
identity threshold. For both 10 fmol and 100 fmol protein
standards, OMSSA identifies a larger number of spectra than
Mascot. Neither algorithm has a top hit above significance
threshold that is a false positive.

The search result scores for all hits found by searching the
100 fmol and 10 fmol protein standards are shown as catego-
rized histograms in Figure 4. The OMSSA significance threshold
correctly categorizes true and false positive hits. The two

Table 1. Numbers of Spectra Identified in the 10 fmol and 100
fmol Data Sets, Categorized by the Highest Scoring Hit above
Significance Threshold

10 fmol 100 fmol

algorithm true posa false posb true posa false posb

OMSSA 27 0 100 0
Mascot 24 0 73 0

a True pos: true positive. b False pos: false positive.

Figure 4. Score histograms categorized into true and false positives. A and B are for the 100 fmol and 10 fmol protein standards,
respectively, as analyzed by OMSSA. Red indicates false positives and green true positives. The horizontal axis is the logarithm of the
E-value and the vertical axis the number of hits with the given score. Scores below an E-value of 0.1 are considered significant. C and
D are for the 100 fmol and 10 fmol protein standards as analyzed by Mascot. The horizontal axis is the identity threshold minus the
ions score divided by 10, and values below 0 are considered significant. This scale was chosen to allow comparison to the OMSSA
score.
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significant Mascot false positive hits correspond to the peptide
SSLRQTVVR from the human protein GREB1, isoform a (ac-
cession NP_055483). Neither of these significant false positives
is the top scoring hitsMascot finds a better scoring hit to
chicken lysozyme in both cases. A BLAST search of this peptide
to all mammalian and chicken sequences in nr show no
significant homologues to the cocktail proteins or obvious
contaminants, making this a likely true false positive. This
peptide has several closely matching b and y ions of charge
1+ and 2+, which can lead to over counting of ion matches as
discussed earlier in this paper.

Commonly, Receiver Operating Characteristic (ROC) analysis
is applied to characterize the sensitivity and specificity search
algorithms.28 ROC curves for OMSSA and Mascot are show in
Figure 5. For the 10 fmol data set, OMSSA displays slightly
better specificity than Mascot and slightly worse sensitivity. For
the 100 fmol data set, the sensitivity and specificity of OMSSA
is better than Mascot. The differences between these two ROC
analyses are likely due to a variety of factors, including variation
in signal-to-noise between the two datasets.

Although we did not perform extensive performance testing,
OMSSA took 901 s on one CPU to perform the 100 fmol search.
Mascot required 716 s running on a cluster of 6 roughly
equivalent computational CPUs.

Conclusion

The ROC analysis shows that, within the limitations of the
spectral dataset, OMSSA is an efficient, sensitive, and specific
algorithm for matching MS/MS peptide spectra. At default
thresholds, OMSSA matches more spectra from a standard
protein cocktail than Mascot and is faster than Mascot in
searching large datasets.
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Appendix

Derivation of the Poisson distribution for spectra containing
doubly and singly charged product ions. If 1+ and 2+ product
ions are present in an MS/MS spectrum, then the spectrum
can be considered as two separate ranges: A, the m/z range
above m/2, which contains only charge 1+ product ions and
B, the m/z range below m/2, which contains charge 1+ and
2+ product ions. Each of these regions can be modeled with a
separate Poisson distribution. To begin, we will consider range
A. For this range, the number of possible matches is (r-m/2)/
2t and we are trying to match h‚(r-m/2)/m calculated m/z
values to v‚(r-m/2)/(r-o) experimental product ions. This
would give us a mean of

Range B has (m/2 - o)/2t possible matches. In this range, we
are trying to match h‚(m/2 - o)/m singly charged ions and
h‚(m/2 - o)/(m/2) doubly charged ions to v‚(m/2 - o)/(r - o)
experimental product ions. The resulting mean is

From elementary probability theory, the mean of the combined
distribution is

References

(1) Washburn, M. P.; Wolters, D.; Yates, J. R., 3rd Nat. Biotechnol.
2001, 19, 242-247.

(2) Aebersold, R.; Mann, M. Nature 2003, 422, 198-207.
(3) Johnson, R. S.; Taylor, J. A. Mol. Biotechnol. 2002, 22, 301-315.
(4) Shevchenko, A.; Sunyaev, S.; Loboda, A.; Bork, P.; Ens, W.;

Standing, K. G. Anal. Chem. 2001, 73, 1917-1926.
(5) Ma, B.; Zhang, K.; Hendrie, C.; Liang, C.; Li, M.; Doherty-Kirby,

A.; Lajoie, G. Rapid Commun. Mass Spectrom. 2003, 17, 2337-
2342.

(6) Mann, M.; Wilm, M. Anal. Chem. 1994, 66, 4390-4399.

Figure 5. ROC analysis plots for the 100 fmol and 10 fmol protein standards as searched by OMSSA and Mascot. The values plotted
are the total number of true and false positive identifications as the significance threshold for each algorithm is varied from high
significance to low significance. A value toward the top indicates higher sensitivity and a value to the left indicates higher specificity.

µA ) ( 2t
r - m/2)(h‚(r - m/2)

m )(v‚(r - m/2)
r - o ) ) 2thv

m
‚r - m/2

r - o

µB ) ( 2t
m/2 - o)(h‚(m/2 - o)

m
+

h‚(m/2 - o)
m/2 )(v‚(m/2 - o)

r - o ) )

6thv
m

‚m/2 - o
r - o

µ2 ) µA + µB ) 2thv
m

‚r + m - 3o
r - o

OMSSA research articles

Journal of Proteome Research • Vol. 3, No. 5, 2004 963



(7) Sunyaev, S.; Liska, A. J.; Golod, A.; Shevchenko, A. Anal. Chem.
2003, 75, 1307-1315.

(8) Tabb, D. L.; Saraf, A.; Yates, J. R., 3rd Anal. Chem. 2003, 75, 6415-
6421.

(9) Eng, J. K.; McCormack, A. L.; Yates, J. R. J. Am. Soc. Mass Spectrom.
1994, 5, 976-989.

(10) Pevzner, P. A.; Dancik, V.; Tang, C. L. J. Comput. Biol. 2000, 7,
777-787.

(11) Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S.
Electrophoresis 1999, 20, 3551-3567.

(12) Field, H. I.; Fenyo, D.; Beavis, R. C. Proteomics 2002, 2, 36-47.
(13) Clauser, K. R.; Baker, P.; Burlingame, A. L. Anal. Chem. 1999, 71,

2871-2882.
(14) Fenyo, D.; Qin, J.; Chait, B. T. Electrophoresis 1998, 19, 998-1005.
(15) Zhang, N.; Aebersold, R.; Schwikowski, B. Proteomics 2002, 2,

1406-1412.
(16) Altschul, S. F.; Madden, T. L.; Schaffer, A. A.; Zhang, J.; Zhang,

Z.; Miller, W.; Lipman, D. J. Nucleic Acids Res. 1997, 25, 3389-
3402.

(17) MacCoss, M. J.; Wu, C. C.; Yates, J. R., 3rd Anal. Chem 2002, 74,
5593-5599.

(18) Fenyo, D.; Beavis, R. C. Anal. Chem. 2003, 75, 768-774.

(19) Moore, R. E.; Young, M. K.; Lee, T. D. J. Am. Soc. Mass Spectrom.
2002, 13, 378-386.

(20) Keller, A.; Nesvizhskii, A. I.; Kolker, E.; Aebersold, R. Anal. Chem.
2002, 74, 5383-5392.

(21) Bafna, V.; Edwards, N. Bioinformatics 2001, 17 Suppl 1, S13-21.
(22) Colinge, J.; Masselot, A.; Giron, M.; Dessingy, T.; Magnin, J.

Proteomics 2003, 3, 1454-1463.
(23) Sadygov, R. G.; Yates, J. R., 3rd Anal. Chem. 2003, 75, 3792-3798.
(24) Havilio, M.; Haddad, Y.; Smilansky, Z. Anal. Chem. 2003, 75, 435-

444.
(25) Malloy, M. P.; Herbert, B. R.; Walsh, B. J.; Tyler, M. I.; Traini, M.;

Sanchez, J. C.; Hochstrasser, D. F.; Williams, K. L.; Gooley, A. A.
Electrophoresis 1998, 19, 837-844.

(26) Maynard, D. M.; Masuda, J.; Yang, X.; Kowalak, J. A.; Markey, S.
P. J. Chrom. B 2004, in press.

(27) Geer, L. Y.; Ming, X.; Wagner, L.; Kowalak, J. A.; Roth, J. S.;
Maynard, D. M.; Bryant, S. H.; Markey, S. P. J. Am. Soc. Mass
Spectrom. 2003, 14 Suppl, A031779.

(28) Gribskov, M.; Robinson, N. L. Comput. Chem. 1996, 20, 25-33.

PR0499491

research articles Geer et al.

964 Journal of Proteome Research • Vol. 3, No. 5, 2004


